If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+116x+64=0
a = 7; b = 116; c = +64;
Δ = b2-4ac
Δ = 1162-4·7·64
Δ = 11664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{11664}=108$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(116)-108}{2*7}=\frac{-224}{14} =-16 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(116)+108}{2*7}=\frac{-8}{14} =-4/7 $
| 8x-2-5x+7=13x+5 | | 2j–6=2 | | -4w+32=-8w+28 | | 15x+10x=4750 | | -4w+32=-8w+8 | | 7b−5/2=6b−5 | | 7b−5/2=6b−5 | | 10x=(8)(15) | | 7(x-8)+2x=-11 | | 8w+4=6w–8 | | 4=2+2h | | 8b+8=3+7b | | s3– 5= -3 | | -8u+6(u+2)=-2 | | 3/a=5/3 | | 3x−4=15 | | -3x-5=-7+5(-7-8x) | | -2y+4(y-7)=-26 | | -12=3-2a-3a | | (x+1)x(x+1)-10=2x | | -3x-5=-7+5(-7-8x( | | 1=5–2d | | 1=9–2w | | 6(a+7)=42 | | x-7x+456=-200 | | 0.3x=2.85 | | (-3)/(x-4)=0 | | 2x-4/4=5x+3 | | x2=–13x–4 | | x=20-x/5 | | 5(x+8)=7x-4/2 | | 8.93−0.11(x+3)=1.25x+0.9(x−3) |